The development of methods for the direct 3D printing of multifunctional devices and sensors has dramatically accelerated, concomitant with advances in functional materials and fabrication processes. In particular, novel strategies have been developed to enable the intimate biointegration of wearable electronic devices with human skin in ways that bypass the mechanical and thermal restrictions of traditional microfabrication technologies. Here, a multimaterial, multiscale, and multifunctional 3D printing approach is employed to fabricate 3D tactile sensors under ambient conditions conformally onto freeform surfaces. The customized sensor is demonstrated with the capabilities of detecting and differentiating human movements, including pulse monitoring and finger motions. The custom 3D printing of functional materials and devices opens new routes for the biointegration of various sensors in wearable electronics systems, and toward advanced bionic skin applications.

The development of methods for the direct 3D printing of multifunctional devices and sensors has dramatically accelerated, concomitant with advances in functional materials and fabrication processes. In particular, novel strategies have been developed to enable the intimate biointegration of wearable electronic devices with human skin in ways that bypass the mechanical and thermal restrictions of traditional microfabrication technologies. Here, a multimaterial, multiscale, and multifunctional 3D printing approach is employed to fabricate 3D tactile sensors under ambient conditions conformally onto freeform surfaces. The customized sensor is demonstrated with the capabilities of detecting and differentiating human movements, including pulse monitoring and finger motions. The custom 3D printing of functional materials and devices opens new routes for the biointegration of various sensors in wearable electronics systems, and toward advanced bionic skin applications.

The skin plays a vital role in shaping our interactions with the world, stretchable electronic devices mimicking the properties of skin could have profound implications for prosthetics and medicine. Providing prosthetic hands with the ability to sense is particularly important, as each year ≈185 000 Americans suffer from limb loss, requiring substitutional prosthetics. Efforts to create artificial skins with human-like sensory capabilities have been motivated over the past several decades. Common methods to measure tactile stimuli are based on capacitive and piezoresistive mechanisms. Capacitive sensors can exhibit excellent sensitivity, linearity, and temperature invariance, but their performance can be influenced by electromagnetic interference, often requiring shielding to achieve high signal-to-noise ratios. Piezoresistive sensors have been extensively investigated in artificial skin applications owing to their flexibility, simple device structure, and compatibility with electronic readout methods. New methods to fabricate piezoresistive artificial skins directly onto conformal, geometrically complex structures could further expand their impact.

3D printing technologies typically employ a computer-controlled positioning stage whose motion is derived from a prescribed computer-generated pattern in order to directly create desired 3D micro and macrostructures from raw materials and inks, including the ability to construct complex, customized...
3D geometries.[18–21] Recent innovations in 3D printing also offer flexibility in material selection,[19,22] including cells,[23–26] semiconductors,[27] metals,[28] ceramics,[29,30] and polymers.[31,32] Hence, 3D printing has resulted in the manufacturing of a variety of functional materials and devices, including soft sensors,[33–36] electronics,[27,37] biomedical devices,[38–40] and artificial tissues and organs.[24–26] In addition, recent developments in computer modeling, ink compositions, and extrusion-based deposition techniques have enabled (i) multimaterial 3D printing techniques that allow for the fabrication of 3D objects with higher levels of complexity and functional performance,[41–43] and (ii) the combination of 3D imaging technologies and 3D printing for next-generation, patient-specific biomanufacturing initiatives.[24] Together, these multifaceted advanced manufacturing techniques provide new opportunities for the fabrication of wearable devices via the incorporation of topological conformalities, interwoven 3D geometries, and the programmable integration of multiple materials and functionalities.[38] Indeed, directly printing 3D structures and functional devices on biological and nonflat substrates remains a substantial challenge that requires, at least, closed-loop scan-and-print processes, biocompatible inks that can be processed under mild conditions, and a fundamental understanding of interfacial chemistries and mechanics.

Here, we demonstrate the design and fabrication of stretchable tactile sensors that are 3D printed under ambient conditions via a combination of nanocomposite ink optimization, 3D imaging, and multimaterial 3D printing. For this purpose, we developed sinter-free inks with adjustable viscosities and electrical conductivities, integrated these materials via the same one-pot custom-devised 3D printing process, and measured their sensing behavior on various platforms and in fully integrated arrays. The developed inks were manipulated by four different, independently addressable nozzles in order to fabricate the 3D tactile sensors via one continuous 3D printing process. Each printed device was composed of a base layer, a sensor layer, two electrode layers, an isolating layer, and a sacrificial supporting layer (Figure 1a–c). The complete step-by-step process is shown in Figure 1d.

A critical aspect of 3D printing wearable devices is to enable printing under mild, ambient conditions, compatible with various biological substrates. In order to accomplish this, the ink materials should be optimized in order to (i) ensure smooth flow through fine deposition nozzles during the printing process, (ii) promote high stretchability while maintaining good electrical conductivity of the printed features, but without curing or sintering in harsh conditions (i.e., high temperature and intense UV), and (iii) provide sufficient structural integrity to withstand drying without delamination or distortion. Initially, we explored the incorporation of nanoscale conductive fillers such as silver (Ag) nanoparticles (Figure S1a, Supporting Information) and nanowires (Figure S1b, Supporting Information) and nanowires.

---

**Figure 1.** Tactile sensor design principle and 3D printing procedure. a) Schematic of the tactile sensor consisting of a base layer, top and bottom electrodes, an isolating layer, a sensor layer, and a supporting layer. b) Side and c) top view of the tactile sensor. d) 3D printing process of the sensor on a glass substrate in eight sequential steps. In step I, a 4 × 4 mm² silicone base layer is printed. In step II, a 3 × 3 mm² bottom electrode layer is printed using the 75 wt% Ag/silicone ink. In step III, a 1 mm tall, 150 µm thick cylinder wall with a radius of 350 µm is printed using the 68 wt% Ag/silicone ink as the sensor layer. In step IV, a 3 × 3 mm² isolating layer is printed using the silicone ink. In step V, a 3 × 3 mm² supporting layer with a thickness of 0.8 mm is printed using the 40 wt% Pluronic ink. In step VI, a 2 × 2 mm² top electrode layer is printed using the 75 wt% Ag/silicone ink. In step VII, the supporting layer is removed by immersing the sensor in water for 3 h. Finally, in step VIII, the sensor is dried for completion.
Information) in the stretchable polymers to achieve both high conductivity and stretchability. However, these nanomaterials required high temperature sintering to form a continuous conductive network. Conversely, microscale particles such as silver flakes were added into an elastomeric polymer to fabricate elastic conductors in a stencil printing step (Figure S1c, Supporting Information). However, their resolutions were limited due to the aggregation of these large-sized particles, which obstructed ink flow through a fine nozzle.

To overcome these limitations, here we developed a new ink enabled by mixing submicrometer-sized silver particles within a highly stretchable silicone elastomer (Dragon Skin 10,[44] which is curable at room temperature). Figure 2a,b shows the typical uniform particle distributions of two inks with 68 wt% and 75 wt% Ag, respectively, incorporated in the silicone elastomer. The rheological properties and pot-life of the inks were adjusted by adding chemical agents including a curing retarder, a thickening agent, and a solvent (dichloromethane (DCM)). With increasing Ag content, the stretchability of the cured inks decreased while the modulus increased (Figure 2c,d and Figure S2, Supporting Information).

To identify the optimal sensor layer ink, the electrical properties of the cured inks were analyzed via four-point probe measurements. The electrical conductivities of the Ag/silicone composites showed typical Ag particle concentration-dependent behavior. The conductivity increased with loading of silver particles, and the percolation threshold was found to be 67.45 wt% (Figure S3a, Supporting Information). Thus, near the percolation concentration (68 wt%), the 3D conductive network is not fully formed,[45] such that the conductivity of the ink with 68 wt% Ag loading content should be sensitive to applied pressure. Indeed, when a continuous pressure was applied to the ink with 68 wt% Ag, its resistance dramatically decreased and finally reached a plateau (Figure 2e), resulting in an ≈200 × change in resistance. Under compression, Ag particles are forced to pack more closely, increasing electrical conduction pathways[46] and the ink containing 68 wt% Ag concentration was the most sensitive elastic piezoresistive material among our prepared inks.

When the 68 wt% Ag ink was tested as a sensor layer, the relative current changes (ΔI/I0) were found to be 2500%, 8500%, and 17 000% under 60, 120, and 250 kPa cyclic applied loading pressures, respectively (Figure 2f). In addition, the much lower initial conductivity (9.9 × 10⁻¹ S m⁻¹) and high sensitivity of the inks with 68 wt% Ag content ensured that the primary electrical signal of the final device arose from deformation of the sensor layer. As the Ag content increased to 75 wt% or higher, the conductive network inside the inks surpassed the percolation threshold, and the relative current change decreased to 900% (for 75 wt%) and 280% (for 80 wt%), when an equivalent cyclic pressure of 250 kPa was applied (Figure S3b,c, Supporting Information). Thus, the ink with 75 wt% Ag was chosen for the electrode layers due to its appropriate balance of high conductivity and stretchability.

Besides the sensor and electrode layers, the base and isolating layers were fabricated using a modified silicone ink, Dragon Skin 10, with both a thickening agent and curing retarder added. After printing and curing the ink at room temperature, the high stretchability of Dragon Skin 10 (=10000% strain to failure)[44,47] offered the tactile sensor both mechanical flexibility and electrical isolation. Further, the silicone rubber has a low modulus of 150 kPa,[47] similar to that of skin, and lower hardness (Shore A 10) than that of human skin (Shore A 20).[48,49] Based on the above analysis of the inks, our tactile sensors were fabricated as follows (Figure 1d and Movie S1, Supporting Information): (i) base layer: silicone; (ii) bottom electrode: 75 wt% Ag/silicone; (iii) sensor layer: 68 wt% Ag/silicone; (iv) isolating layer: silicone; (v) supporting layer: 40% Pluronic (removed later, see Movie S2 in the Supporting Information). The final printed devices are shown in Figure 3a-c.

To measure the mechanical properties of the devices, we conducted dynamic mechanical analyses on the printed devices to determine their mechanical responses under dynamic applied forces. As shown in Figure S5 (Supporting Information), both the storage (E') and loss (E'') moduli increased two orders of magnitude as the dynamic strains increased from 10% to
On the other hand, the loss modulus slightly increased by a factor of two at higher dynamic frequencies, which is typical viscoelastic behavior. We also conducted a finite element analysis of the printed tactile sensor under compressive loading conditions. A simplified 3D tactile sensor model was created and meshed (Figure S6, Supporting Information), then an Ogden model was found to accurately fit the hyperelastic properties of each component (Figure S7, Supporting Information). Hence, the Ogden model was employed to simulate the properties of the printed device, with results shown in Figure S8 (Supporting Information). The regions with higher stress and strain concentration were primarily located in the sensor layer upon typical loading scenarios, which indicated that the mechanical response of the device under compression was dominated by the properties of the 68 wt% Ag/silicone ink. By contrast, when the device was cyclically stretched to 200% strain under a tensile stress, the deformation was generated on the electrode layers, and no obvious changes were observed on the sensor layer (Figure S9 and Movie S3, Supporting Information). This result revealed that the components with 75 wt% Ag/silicone ink determined the mechanical properties of the device under stretching.

We next evaluated the electrical sensing behavior of the printed tactile sensors. When the top and bottom electrodes were contacted, the device revealed linear I–V curves (Figure 3d). In addition, as the applied pressure increased from 100 to 500 kPa, the resistance of the device decreased ≈12-fold, from 1.14 kΩ to 95 Ω. Under dynamic testing, the amplitude of output current signals significantly decreased as the input frequency increased from 0.125 to 2 Hz (Figure 3e,f and Figure S10, Supporting Information). A negligible hysteresis was observed when the frequency was below 0.25 Hz, and the relative hysteresis increased with frequency up to 82% at 1.0 Hz. The hysteresis can be attributed to the elastic deformation of the device during loading–unloading cycles, and the viscoelastic behavior of the silicone.

The sensitivity of the tactile sensor is defined as the compressive gauge factor and calculated using Equation S16 (Supporting Information). For the entire device it was found to be ≈180 (Figure 3g), which is similar to that of the 68 wt% Ag/silicone ink, to single crystal silicon, and to other recent composites. This phenomenon demonstrated that the sensor layer (made with the 68 wt% Ag/silicone ink) dominated the electromechanical properties of the printed devices under compressive strains. Moreover, when a constant strain (initial pressure 500 kPa) was applied to the device, the current change sharply increased by 8000% within a few seconds; and the output signal gradually reached a plateau. The applied pressure exhibited relaxation behavior (Figure 3h and Figure S11, Supporting Information). The device also exhibited consistent responses even under >100 cycles of applied pressure (Figure 3i).

Given the high flexibility, stretchability, and sensitivity of the 3D printed tactile sensing device, we next applied the device toward monitoring human motions. This capability was evaluated by mounting the sensor directly above the radial artery to monitor the physical force of a pulse in real time.

Figure 3. Sensing behavior of the 3D printed tactile sensor. a) Top view SEM image of the printed sensor layer. b) Side and c) top view SEM images of the 3D printed tactile sensor. All scale bars are 200 µm. d) Current–voltage characteristics of a tactile sensor under different applied pressures. e) Plots showing frequency responses to a dynamic pressure of 200 kPa at an input frequency of 0.125 Hz. f) Current change for various frequencies of 200 kPa applied pressure. g) Mean compressive gauge factor for different ink materials and the tactile sensor device. h) Current change of the tactile sensor upon applying a constant strain with an initial pressure of 500 kPa. i) Current change of the device when subjected to 100 pressing cycles with a pressure of 100 kPa at a frequency of 0.25 Hz.
The pulses were monitored under two different conditions: (i) sedentary ($\approx 60$ beats min$^{-1}$) and (ii) postexercise ($\approx 120$ beats min$^{-1}$). As shown in Figure 4b,c, the sedentary pulse showed average current changes of 80%, and the postexercise beat showed an average current change of 118%, with higher frequencies. Therefore, pulse rates can be differentiated by discernible magnitudes and frequencies. The durability of the tactile sensor was demonstrated by wearing it for three consecutive days and repeating the pulse tests (Figure S12, Supporting Information). The sensing behavior remained unchanged throughout the 3 d of testing. For further applications, the tactile sensor was mounted on a fingertip (Figure 4d) and attached to the joint of the index finger (Figure 4e) for monitoring large-scale movements. It was observed that the response signal exhibited outstanding stability and reproducibility upon both finger pressings on a keyboard and bending-release motions. These results provide a proof of concept of the abilities of the printed tactile sensor to monitor various degrees of human motions.

Next, the 3D sensor was conformally printed on a fingertip using inverse engineering technologies (Figure 4f and Movie S4, Supporting Information), which were realized via a combination of 3D scanning, printing, and modeling analysis. A hand model was first scanned using a 3D structured light scanning (SLS) technique (Figure S13a,b, Supporting Information). The SLS imaging technique has been used previously to obtain the geometrical information of complex freeform objects including body parts and teeth. A 3D model with the topological information of the hand model was generated in point cloud format as shown in Figure S13c (Supporting Information). Then, the point cloud format was transformed to 3D polygon meshes (Figure S13d,e, Supporting Information), which were required to redesign the tactile sensor so that it was conformal to the surface of the fingertip (Figure S13f, Supporting Information). Finally, the tactile sensor was directly printed on the fingertip by using our custom-designed multimaterial 3D printing process (Figure S13g–i, Supporting Information).

The sensing behavior of the printed tactile sensor on the fingertip upon a pressing by a human finger was then explored (Figure 4g and Movie S5, Supporting Information). The amplitude of the output signal varied with the pressing forces applied with a time interval of 5 s. Upon applying a weak finger press ($\approx 100$ kPa), the sensor responded with a current change of 5000%. When a strong press was applied ($\approx 400$ kPa), the signal intensity increased to 8000%. These distinguishable response signals also demonstrated the capability of the device for detecting and differentiating human movements. This approach thus provides a unified and customizable manufacturing scheme for next-generation directly printed wearable devices with diverse integrated functionalities.
For electronic skin applications, it is desirable to scale up the sensor to an array configuration of several pixels to collect spatially resolved pressure information. For the purposes of this demonstration, we fabricated a 5 × 5 pixel array with a total area of 1 × 1 cm² as shown in Figure 4h and Figure S14 (Supporting Information). The individual pixel had an area of 3 × 3 mm², a height of 1.2 mm, and a common bottom electrode. To test the device, a triangular glass object (0.096 g) with a weight of 50 g was placed on top of the array, and it was observed that the magnitude of the output signal depended on the specific location of the object on the array. The color contrast mapped local pressure distributions, consistent with the shape of the triangle (Figure 4i). Importantly, our technique could be capable of providing large area and facile processing for 3D sensors or wearable biomedical devices.

In summary, we have developed a series of novel inks, which can be cured at room temperature with tunable printability, high flexibility, electrical conductivity, and sensitivity. The inks were used to manufacture 3D tactile sensors under mild conditions on a freeform surface using multimaterial 3D printing and inverse engineering techniques. The printed flexible, stretchable, and sensitive sensors were found proven to be capable of detecting and differentiating human movements, including radial pulse, and finger pressing and bending. This work represents a proof-of-concept illustration that image-coupled 3D multimaterial printing approaches can facilitate customized wearable devices in previously inaccessible ways. Development of a custom-built multifunctional 3D printing process, combined with functional inks, is at the core of this approach and determines the features of the final devices. 3D scanning and reverse engineering allowed us to design the specific geometry to fit the curved surface. Mechanical and computational tools enabled us to design, analyze, and optimize the integrity of the devices. A one-pot multimaterial 3D printing process provided us with the ability to integrate various functional inks into a 3D sensor with a conformal design and high performance. This combination of complex geometries and sophisticated functions offers a proof-of-concept approach for the next generation of wearable devices. Future studies will focus on several directions including: (i) further optimization of the inks, including incorporation of semiconducting materials and devices; (ii) development of other critical devices such as temperature sensors to monitor tissue; and (iii) development of new 3D printing platforms with closed-loop feedback control for real-time printing of objects on arbitrary and moving substrates. Overall, we expect that our methodologies will open new routes to fabricating various sensors with the potential for advancing prosthetic skins, bionic organs, and human-machine interfaces.

Experimental Section

Materials System: The silver nanoparticles and nanowires were synthesized by modifying previously published methods.[44–56] The silver flakes and Ag particles were purchased from Sigma-Aldrich. The silicone ink was prepared from Dragon Skin 10 Slow Cure Part A and B, Thi-Vex Silicone Thickener and Slo-Jo Platinum Silicone Cure Retarder, all from Smooth-On, Inc. Ag/silicone inks (68, 75, and 80 wt%) were prepared as follows: Dragon Skin 10 Part A and B were mixed at 1:1 ratio, followed by addition of Slo-Jo Cure Retarder (0.5 wt%) and solvent DCM (10 wt%). Then, proper amount of silver particles (0.5–2.0 μm) was mixed with the viscous silicone mixture. The sacrificial ink was prepared by mixing 40 wt% Pluronic F127 (Sigma-Aldrich) with ultrafiltered water to print the supporting layer, which was removed by immersing the device in water for several hours. All the inks were mixed using a planetary centrifugal mixer (ARE-310, Thinky) and centrifuged to remove any air bubbles before printing at room temperature.

Multimaterial 3D Printing: Printing was carried out using a custom-built 3D printer (AGS 1000, Aerotech) with two independent z-axes, which translate the printing head in the prescribed pattern. Four dispensing apparatus (HPx, EFD) were used to deposit the four inks through micronozzles with 100 μm inner diameter (S132-0.25-B, EFD). Each z-axis controlled two dispensing apparatus with different heights, which ensured that the first printing tip would not touch the base when the other was printing. All printing paths were controlled using G-code commands, which were generated by the software, Slic3R from 3D models. The 3D tactile sensor model was designed using SolidWorks software. The single sensor was printed within 3 min and cured at room temperature overnight prior to characterization. The printed bottom and top electrode ends of the single sensor were bonded with a thin, flexible cable for external tests. The 5 × 5 pixel array had a common printed bottom electrode and 25 separated top electrodes for external cable connections.

Reverse Engineering of Hand Model: The individual scans were obtained using the DAVID Vision system (SLS-1, David) for scanning the hand model with 30° intervals. Then the images were aligned and assembled to a water-tight 3D model of the scanned hand model. A reverse engineering software (Geomagic) was used to transform the 3D model file from point cloud data into 3D polygon meshes, which were edited by SolidWorks for the conformal device design. Finally, the Slic3r software was used to slice the 3D model and generate the G-code for the 3D printing process.

Sensing Behavior Testing: The compression force was controlled by a programmable robot (F5200N, Fisnar) with a custom-built positioner. The specimen was placed on an electronic balance (S622, H&C Weighing Systems), which can measure and transfer the real-time force value to a computer. Then the specimen was pressed by the positioner with cyclic pressures. The current differences for the sensors were acquired with a source meter unit (Model 2450, Keithley) and transmitted to a computer via a serial port. The tactile sensor mounted on the human hand was covered by a stretchable tape (VHB, 3M) for a steady connection. The sensing signals were also recorded by the source meter. The Institutional Review Board (IRB) at the University of Minnesota determined that this experiment does not meet the federal definition of human subjects research and therefore an IRB review was not required.

Mechanical Testing: The mechanical properties of each ink and the printed device were studied using a dynamic mechanical analyzer (RSA-G2, TA Instruments). The samples for the tensile test were printed using various inks in the form of filaments (diameter 1 mm, length 10 mm). The specimens of each ink for the compression test were printed in the form of cylinders (diameter 5 mm and height 5 mm).

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

The authors acknowledge the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (Award No. 1DP2EB020537). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank Dr. Chris Frethem from the
3D printing, bionic skin, stretchable electronics, tactile sensors, wearable devices

Conflict of Interest
The authors declare no conflict of interest.

Keywords
3D printing, bionic skin, stretchable electronics, tactile sensors, wearable devices

Received: March 2, 2017
Revised: March 27, 2017
Published online: May 5, 2017


Supporting Information


3D Printed Stretchable Tactile Sensors

Shuang-Zhuang Guo, Kaiyan Qiu, Fanben Meng, Sung Hyun Park, and Michael C. McAlpine*
3D Printed Stretchable Tactile Sensors

Supporting Information

Shuang-Zhuang Guo, Kaiyan Qiu, Fanben Meng, Sung Hyun Park, Michael C. McAlpine *

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States

* Corresponding author: E-mail, mcalpine@umn.edu, Phone: 612-626-3303
Figure S1. SEM images of the potential conductive fillers: (a) silver nanoparticles (diameter 50 nm), (b) silver nanowires (diameter 100 nm, length 3-5 µm), and (c) silver micro flakes (diameter 10 µm).
Figure S2. (a) Optical and microscopy images of the printed specimen for the mechanical tensile tests. (b) Plot showing Young’s modulus vs. silver content.
The Percolation Threshold

There is a critical conductive filler loading content where the composite transitions from an insulating state into a conductive state. The critical content is termed the percolation threshold, in which the electrical conductivity of the composite dramatically increases by several orders of magnitude. A power law fit\(^1\) as given in Equation S1, derived from percolation theory, is often used to fit electrical conductivity data with respect to filler content above the percolation threshold:

\[
\text{Initial conductivity} = \beta_{c,\sigma} \left( \frac{m - m_{c,\sigma}}{m_{c,\sigma}} \right)^n \text{ for } m \geq m_{c,\sigma} \tag{S1}
\]

where the \(\beta_{c,\sigma}\) and \(n\) are power-law constants, and \(m_{c,\sigma}\) is the electrical percolation threshold (wt%). After fitting the conductivity data shown in Figure S3a, the percolation threshold was found to be 67.45 wt%.
Figure S3. Electrical conductivity of the Ag/silicone inks. (a) Initial conductivity vs. Ag content. The dashed line is a power-law expression fit using Equation S1. Relative current change of (b) 75 wt%, and (c) 80 wt% Ag/silicone ink upon three different cyclic pressures. The red lines show signals for 60 kPa pressure. The yellow lines are signals for 120 kPa loading. The blue lines are signals for 250 kPa pressure.
Figure S4. SEM images of the printing process. (a) Top view of printed bottom electrode layer using the 75 wt% Ag/silicone ink. (b) Higher magnification of the bottom electrode showing the spanning structure. (c) Inclined top view of the fully printed sensor.
Figure S5. Dynamic modulus of the tactile sensor. (a) Storage Modulus ($E'$) and Loss Modulus ($E''$) vs. frequency at different strains: 10% ($\triangle E', \triangle E''$), 20% ($\square E', \square E''$), 30% ($\blacktriangle E', \blacktriangle E''$), and 40% ($\blacktriangledown E', \blacktriangledown E''$). (b) Storage Modulus ($E'$) and Loss Modulus ($E''$) vs. strain at different frequencies: 0.1 Hz ($\blacktriangle E', \blacktriangle E''$), 0.2 Hz ($\blacklozenge E', \blacklozenge E''$), 0.5 Hz ($\blacktriangle E', \blacktriangle E''$), 1.0 Hz ($\blacktriangledown E', \blacktriangledown E''$), 2.0 Hz ($\blacktriangleleft E', \blacktriangleleft E''$), and 5.0 Hz ($\blacktriangleright E', \blacktriangleright E''$).
Figure S6. Model setup of the tactile sensor for the finite element analysis. (a) Side and (b) top view of the tactile sensor model. (c) Side and (d) top view of the meshed FEA model.
Hyperelastic model for the rubber-like polymer simulation (Ogden model)\(^2\)

The Ogden model proposes a strain energy function based on the principal stretches \((\lambda_1, \lambda_2, \lambda_3)\) for incompressible materials. The equation for the Ogden strain energy potential \((W)\) is given by:

\[
W = \sum_{i=1}^{N} \frac{2\mu_i}{\alpha_i^2} \left( \frac{\partial W}{\partial \lambda_i^2} + \frac{\partial W}{\partial \lambda_i^3} - 3 \right) + \sum_{i=1}^{N} \frac{1}{D_i} (J - 1)^{2i} \tag{S2}
\]

where: \(\alpha_i\) and \(\mu_i\) are material constants, \(\lambda_i\) are the principal stretch components, \(J\) is the elastic volume ratio, and \(D_i\) is the compressibility.

when \(N = 3\),

\[
\begin{align*}
\frac{t_1-t_2}{\lambda_1^2-\lambda_2^2} &= 2 \left( \frac{\partial W}{\partial \lambda_1^2} + \lambda_2^2 \frac{\partial W}{\partial \lambda_2^2} \right) \tag{S3} \\
\frac{t_2-t_3}{\lambda_2^2-\lambda_3^2} &= 2 \left( \frac{\partial W}{\partial \lambda_2^2} + \lambda_3^2 \frac{\partial W}{\partial \lambda_3^2} \right) \tag{S4} \\
\frac{t_1-t_3}{\lambda_1^2-\lambda_3^2} &= 2 \left( \frac{\partial W}{\partial \lambda_1^2} + \lambda_3^2 \frac{\partial W}{\partial \lambda_3^2} \right) \tag{S5}
\end{align*}
\]

where \(t = \sigma / \lambda\)

\[
I_1 = \lambda_1^2 + \lambda_2^2 + \lambda_3^2 \tag{S6}
\]

\[
I_2 = (\lambda_1 \lambda_2)^2 + (\lambda_2 \lambda_3)^2 + (\lambda_1 \lambda_3)^2 \tag{S7}
\]

For incompressible materials:

\[
\begin{align*}
\lambda_1 \lambda_2 \lambda_3 &= 1 \tag{S8} \\
J &= 1 \tag{S9} \\
\lambda &= 1 + \varepsilon \tag{S10} \\
\lambda_2 &= \lambda_3 = \lambda^{-1/2} \tag{S11}
\end{align*}
\]

Boundary conditions for uniaxial tension/compression:

\[
\begin{align*}
\sigma_1 &= \sigma = \frac{t}{\lambda} \tag{S12} \\
\sigma_2 &= \sigma_3 = 0 \tag{S13} \\
\lambda_1 &= \lambda \tag{S14}
\end{align*}
\]

Integration:

\[
\sigma = \sum_{i=1}^{5} \frac{2\mu_i}{\alpha_i} \left( (\varepsilon + 1)^{\alpha_i-1} - (\varepsilon + 1)^{-\alpha_i/2-1} \right) \tag{S15}
\]

\[
i = 132 \mu_i \varepsilon + 1 + \alpha_i - 1 - \varepsilon + 1 - \alpha_i / 2 - 1 \tag{S15}
\]

(S15) was used to simulate the
mechanical properties of the inks, and the results are shown in Table S1, Figure S7 and Figure S8.

**Table S1.** Parameters of the Ogden model for the inks

<table>
<thead>
<tr>
<th>Inks</th>
<th>$\alpha_1$</th>
<th>$\alpha_2$</th>
<th>$\alpha_3$</th>
<th>$\mu_1$</th>
<th>$\mu_2$</th>
<th>$\mu_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicone</td>
<td>2.7190</td>
<td>23.5658</td>
<td>1.7681</td>
<td>1.1144</td>
<td>3.8444E-5</td>
<td>-1.0315</td>
</tr>
<tr>
<td>68 wt% Ag</td>
<td>-6.9221</td>
<td>-4.1444</td>
<td>-12.5235</td>
<td>-3.3769</td>
<td>2.3756</td>
<td>1.3120</td>
</tr>
<tr>
<td>75 wt% Ag</td>
<td>-6.1021</td>
<td>-4.0680</td>
<td>-8.2387</td>
<td>-26.8825</td>
<td>14.0978</td>
<td>13.1103</td>
</tr>
</tbody>
</table>

**Figure S7.** Stress-strain curves of the inks with an Ogden model fitting.
Figure S8. Finite element analysis results. (a) Side, cross-section and top view of the FEA model showing the stress distribution. (b) Side, cross-section and top view of the FEA model showing the strain distribution.

Figure S9. Sensors subjected to 0%, 100 and 200% strain. The enlarged image shows that the sensor layer exhibited negligible deformation at 200% strain.
The Gauge Factor

The fundamental parameter of the tactile sensor is its sensitivity to strain, expressed quantitatively as the gauge factor (GF). Here, the GF is defined as the ratio of fractional change in electrical current to the fractional change in length (strain), and the results are shown in Figure 3d:

\[
GF = \frac{\Delta I/I}{\Delta L/L} = \frac{\Delta I/I}{\varepsilon} = \frac{(I-I_0)/I_0}{\varepsilon}
\]

where \( I \) is the measured current at certain strain, \( I_0 \) is the initial current, and \( \varepsilon \) is the strain.
Hysteresis

The response lag time ($T_{lag}$) of the sensor at different frequencies was defined as the difference between the time of pressure release and the output electrical signal declining back to zero at each cyclic test. As shown in Figures S10a-c, the lag time slightly decreased from 0.49 s to 0.41 s with increasing frequency. In order to compare the effect of the hysteresis at different frequencies, we defined the relative hysteresis as follows:

$$\text{Relative hysteresis} = \frac{2T_{lag}}{1/f} \times 100\%$$  \hspace{1cm} (S17)

where $f$ is the frequency. The results is shown in Figure S10d.

Figure S10. Plots showing frequency responses at a dynamic pressure of 200 kPa and input frequency of (a) 0.25, (b) 0.5 and (c) 1.0 Hz. (d) Comparison of the relative hysteresis for different input frequencies.
Figure S11. Relaxation behavior of the inks. (a) Optical images showing the specimen of 68 wt% Ag/silicone ink subjected to different strain loadings. Relaxation behavior of (b) silicone, (c) 68 wt% Ag/silicone, and (d) 75 wt% Ag/silicone with different initial strains.
Figure S12. Repeatability test of the tactile sensor. (a) Measured pulse signal with the device for 70 sec on the first day. The repeated test results on (b) the second and (c) the third day.
Figure S13. Inverse engineering process and conformal multi-material 3D printing. (a) Optical image of a hand model. (b) Twelve scans obtained from various perspectives to assemble a 3D model. (c) The aligned scans are assembled into a water-tight 3D model. (d) The original scanned model in point cloud format. (e) Transformation of the model data from point cloud to polygon meshes, which provides the topological information of the hand surface. (f) A redesigned tactile sensor that conformally fits the fingertip. (g) Optical image showing the multi-material 3D printing setup. Images of the printed tactile sensor on the fingertip (h) with and (i) without supporting layer.
Figure S14. Photographs of the sensor array. (a) Top view of a single tactile sensor pixel on a penny. (b) Side view of a sensor array with $3 \times 3$ pixel. (c) Top view of a sensor array with $5 \times 5$ pixel. (d) Comparison of the $5 \times 5$ pixel sensor array with fingertip.
Movie S1. 3D Printing a Tactile Sensor. Sped up 7×.

Movie S2. Removal of Sacrificial Support Layer


Movie S5. Real-time Data Output for the Tactile Sensor on a Fingertip upon Pressing

References

